Schockwellen treiben Raketen der Zukunft an Drucken
Geschrieben von: Administrator   
Montag, den 01. Juni 2020 um 19:38 Uhr


Schockwellen treiben Raketen der Zukunft an

Motor auf Grundlage eines Modells der University of Washington verbraucht weit weniger Treibstoff

RDE auf dem Prüfstand im Labor (Foto: James Koch, washington.edu)

RDE auf dem Prüfstand im Labor (Foto: James Koch, washington.edu)

Seattle (pte/19.02.2020/10:51) Raketen sollen künftig von einem Brenner mit rotierender Detonationswelle (RDE) angetrieben werden. Das Triebwerk ist einfacher zu bauen und benötigt weitaus weniger Treibstoff als die bisher eingesetzten Raketenmotoren. Forscher der University of Washington http://washington.edu haben hierfür ein mathematisches Modell fertiggestellt, das die Funktionsweise der Maschine exakt beschreibt. Dieses Modell setzt die Konstrukteure in die Lage, die Macken der RDE gezielt auszumerzen.

Ringförmige Brennkammer

Die RDE besitzt eine ringförmige Brennkammer, in die das Treibstoffgemisch eingespritzt wird. Nach der Zündung entsteht eine umlaufende Druckwelle, die die Detonationskraft verstärkt, ehe sie die Kammer verlässt und für Vortrieb sorgt. Das Treibstoffgemisch wird kontinuierlich zugeführt, sodass der Motor ständig Verbrennungsreste mit großer Kraft ausstößt. Die Geschwindigkeit der Abgase ist höher als die des Schalls.

"Die RDE ist noch im Säuglingsalter", sagt James Koch, Doktorand der University of Washington. Jedoch ein faszinierender Antrieb, wenn er denn komplett verstanden wird. Daran arbeitet Koch. Während herkömmliche Raketentriebwerke zahlreiche Aggregate benötigen, die die Verbrennung steuern und kontrollieren, sorgt die anfängliche Schockwelle, die sich bei der Zündung bildet, selbstständig für den weiteren Verbrennungsprozess.

240.000 Bilder pro Sekunde

Koch und sein Team haben bereits ein Modell einer RDE gebaut, an dem sie unterschiedliche Parameter überprüfen und verändern konnten. Dann zeichneten sie den Verbrennungsprozess mit einer Hochgeschwindigkeitskamera auf. Jedes Experiment dauerte gerade einmal 0,5 Sekunden, aber mit einer Aufnahmegeschwindigkeit von 240.000 Bildern pro Sekunde konnten sie jedes Detail des Prozesses sichtbar machen.

Auf der Grundlage dessen, was sie sahen, entwickelten die Wissenschaftler das besagte mathematische Modell. "Es ist das einzige mathematische Modell, das in der Lage ist, den komplexen Verbrennungsprozess in der Ringkammer exakt zu beschreiben", so Co-Autor J. Nathan Kutz. Jetzt gehen die Forscher daran, auf der Basis des Modells eine zuverlässige Maschine zu bauen.

Video: https://youtu.be/gEYFy3qRNdo

(Ende)
pressetext.redaktion

Aussender: pressetext.redaktion
Ansprechpartner: Wolfgang Kempkens
E-Mail: Diese E-Mail-Adresse ist gegen Spambots geschützt! JavaScript muss aktiviert werden, damit sie angezeigt werden kann.
Tel.: +43-1-81140-300
Website: www.pressetext.com

Teilen: Twitter


© pressetext.deutschland +++ pressetext.austria +++ pressetext.schweiz +++ termindienst +++ fotodienst +++ newsfox.com und der jeweilige Aussender

http://www.pressetext.com/news/20200219015
pte20200219015
Umwelt/Energie, Forschung/Entwicklung

Medieninhaber und Herausgeber:
pressetext Nachrichtenagentur GmbH, Josefstädter Straße 44, A-1080 Wien
pressetext ist reichweitenstärkster Nachrichtenverbreiter für Entscheider und Journalisten in der DACH-Region. Die inhaltliche Verantwortung für redaktionelle Meldungen (pte) liegt bei pressetext, für Pressemitteilungen (pts) und Kapitalmarktmitteilungen börsennotierter Unternehmen (pta) beim jeweiligen Aussender. Die Nachrichten werden auf den pressetext-Länderplattformen publiziert und je nach Abonnement-Profil und gewählter Zustellart einzeln oder täglich als Newsletter an die Abonnenten verschickt. Weitere Informationen erhalten Sie bei unserem Redaktionsservice unter Tel. +43-1-81140-300.

 

 
Bitte registieren Sie sich oder melden Sie sich an, um einen Kommentar abzugeben.